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Abstract

DNA vaccines for Rift Valley fever virus (RVFV), Crimean Congo hemorrhagic fever virus (CCHFV), tick-borne encephalitis virus (TBEV),
and Hantaan virus (HTNV), were tested in mice alone or in various combinations. The bunyavirus vaccines (RVFV, CCHFV, and HTNV)
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xpressed Gn and Gc genes, and the flavivirus vaccine (TBEV) expressed the preM and E genes. All vaccines were delivered by gene gun.
he TBEV DNA vaccine and the RVFV DNA vaccine elicited similar levels of antibodies and protected mice from challenge when delivered
lone or in combination with other DNAs. Although in general, the HTNV and CCHFV DNA vaccines were not very immunogenic in mice,
here were no major differences in performance when given alone or in combination with the other vaccines.
ublished by Elsevier Ltd.
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. Introduction

DNA vaccines offer tremendous promise for multiagent
se. Among the advantages of DNA vaccines are their ease
f construction, low risk, and absence of interference due
o pre-existing immunity to a vector (e.g., vaccinia virus or
denovirus vectors). This technology, however, is still lim-
ted by effective means to deliver the DNA and a paucity of
tudies demonstrating efficacy in humans. Only a few stud-
es have explored the potential of combination DNA vaccines
n animals. We previously demonstrated that DNA vaccines
or four highly pathogenic organisms, Venezuelan equine
ncephalitis virus, Ebola virus, Marburg virus, and Bacillus
nthracis were able to elicit immune responses when given
o animals individually or in combination [1]. In this report,
e expand this area of research by testing combination DNA

∗ Corresponding author. Tel.: +1 301 619 4103; fax: +1 301 619 2439.
E-mail address: connie.schmaljohn@amedd.army.mil (C. Schmaljohn).

vaccines for four additional, highly pathogenic viruses, Han-
taan virus (HTNV), tick-borne encephalitis virus (TBEV),
Rift Valley fever virus (RVFV), and Crimean Congo hemor-
rhagic fever virus (CCHFV).

HTNV is the prototype of the Hantavirus genus of the
family Bunyaviridae and is one of four hantaviruses known to
cause hemorrhagic fever with renal syndrome (HFRS). HFRS
caused by HTNV infection is found exclusively in Asia, with
most cases occurring in China (reviewed in [2]). Hantaviruses
are transmitted to humans by exposure to rodents’ urine,
feces, or saliva. The disease is characterized by fever and
influenza-like symptoms, and in severe cases, shock and renal
failure. A number of inactivated vaccines for HFRS have been
developed and tested in Asia, but there is no vaccine cur-
rently approved by the U.S. Food and Drug Administration
(reviewed in [3]).

CCHFV belongs to the Nairovirus genus of the family
Bunyaviridae and causes a disease characterized by an abrupt
onset of acute febrile illness that can progress to hemor-
rhage, renal failure, and shock. Mortality rates for CCHF have
264-410X/$ – see front matter. Published by Elsevier Ltd.
oi:10.1016/j.vaccine.2005.08.034
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ranged from 10 to 70% in various outbreaks. Transmission
usually occurs by tick-bite, but can also occur through contact
with infected animal products or by person-to-person spread
(reviewed in [4]). Evidence for the presence of CCHFV has
been collected from South Africa through sub Saharan Africa,
Eastern Europe, the Middle East and parts of China. No vac-
cine for CCHF has been developed.

RVFV, a member of the Phlebovirus genus of the family
Bunyaviridae, is also is found in sub Saharan Africa, thus
overlaps the endemic region of CCHF. RVFV is an impor-
tant livestock pathogen causing abortion in pregnant animals,
especially ewes, and a high mortality in newborn lambs, kids,
and calves. RVF also impacts humans, as evidenced by a
recent epidemic in Saudi Arabia and Yemen [5]. Disease in
humans is characterized by an influenza-like febrile illness
and can include complications, such as retinitis leading to
blindness, and more rarely, encephalitis (reviewed in [6]).
An inactivated preparation of RVFV has been developed and
is currently available only under Investigation of New Drug
(IND) status [7,8]. There are fewer than 3000 doses of the
vaccine available, and preparation of new lots is problem-
atic. Because RVFV is not endemic to the United States, and
is such a virulent animal pathogen, its use is controlled. In
addition, the facility that previously generated the virus for
inactivation has closed. Consequently, alternative means for
producing a vaccine have been explored. Toward this goal,
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the absence of antibodies to the nucleocapsid protein (which
is not a component of the vaccine) after challenge with the
hantavirus [16]. We have shown that the HTNV DNA vaccine
induces high levels of neutralizing antibodies in hamsters and
completely protects them from challenge (i.e., confers sterile
immunity) [16,17]. In addition, we found that in monkeys,
the vaccine induces high levels of neutralizing antibodies,
which persist for many months after vaccination [17,18].

The TBEV DNA vaccine expresses the preM and E genes
of a central European isolate of TBEV (Hypr strain) [19]. We
previously demonstrated that this vaccine confers protective
immunity to mice for at least 1 year after vaccination [19], and
elicits high levels of neutralizing antibodies in monkeys [20].
Passive transfer of sera from vaccinated monkeys protects
mice from lethal challenge with TBEV [20].

DNA vaccines for RVFV have not yet been reported.
We demonstrated in earlier studies that injecting mice with
baculovirus-expressed RVFV M segment products elicited
protective immunity [21]. Similarly, infecting mice with a
recombinant vaccinia virus expressing the M segment of
RVFV elicited protection from RVFV challenge [22]. In
addition, passive transfer of neutralizing antibodies to either
Gn or Gc protected mice from challenge with RVFV [23].
Consequently, the DNA vaccines that we developed for the
studies reported here, express the M genome segment of
the virus.
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mutagenized, live-attenuated strain of RVFV, MP12, was
eveloped and tested in mice, sheep, and cows [9–13]. This
accine was quite promising in studies to assess its safety and
fficacy; however, this vaccine has not yet been licensed.

TBEV is a member of the family Flaviviridae. Human
isease is characterized first by a febrile illness, which is fol-
owed by CNS involvement in 20–30% of cases (reviewed in
14]). Tick-borne encephalitis occurs in all countries of Cen-
ral and Eastern Europe as well as in Scandinavia, France,
taly, Greece, and Albania (reviewed in [14]). A formalin-
nactivated, chick embryo-derived vaccine was introduced
nto parts of Europe in 1976 and has resulted in a notable
ecline in disease. Despite the success of this vaccine, it
uffers the disadvantages commonly associated with inacti-
ated virus vaccines, such as the requirement for large-scale
roduction and purification of a highly infectious human
athogen, the risk of incomplete inactivation of the virus,
nd the need to deliver the vaccine with adjuvant in a three-
hot series [15]. Also, this vaccine is not licensed for use in
he United States.

We previously reported constructing and testing DNA
accines for HTNV and TBEV in animals. The HTNV vac-
ine expresses the complement of the medium (M) genome
egment of the virus, which encodes the two viral glycopro-
eins Gn and Gc (referring to the amino- or carboxy-terminal
ncoded protein in the polyprotein precursor, and formerly
esignated G1 and G2). To gauge protective immunity, we use
hamster infection model in which we measure neutralizing
ntibody responses to the viral envelope glycoproteins after
ene gun inoculation of the DNA vaccine, and then measure
To date, there have been no reports of recombinant DNA
accines for CCHFV. As for other viruses in the family, we
urmised that the M segment expression products would be
he most likely candidates for eliciting protective immunity.
nlike those of other viruses in the family, however, the M

egment precursor of CCHFV Gn and Gc has been found
o undergo at least two post-translational proteolytic cleav-
ge events. A precursor of the Gn glycoprotein is cleaved at
he conserved motifs RSKR and RRLL, potentially releasing
highly variable mucin-like domain at its amino terminus,

nd a second N-terminal domain of approximately 35 kDa
P35) as well as the 37 kDa mature Gn [24,25]. An 85 kDa
recursor of Gc has also been described [24]; however, the
leavage events leading to the mature 75 kDa Gc protein
ave not been determined. The importance of these precursor
olypeptides in viral morphogenesis or pathogenesis is not
nown. For the studies reported here, we generated a DNA
accine construct expressing the entire M genome segment
f CCHFV.

In a recent study, monoclonal antibodies (MAbs) to
CHFV Gc, but not to Gn, neutralized virus in plaque

eduction neutralization tests (PRNT) [26]. However, MAbs
irected against Gn were generally more effective at protect-
ng mice from a lethal CCHFV challenge than MAbs to Gc
hen administered either 24 h before or after infection even

hough these Gn MAbs did not neutralize in the cell-culture
ssays. In addition, not all of the Gc MAbs that neutralized
CHFV infection in vitro conferred protection in vivo. Thus,

here was not a strict correlation between in vitro neutraliza-
ion and in vivo protection [26].
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Here, we report constructing and testing in mice two
RVFV M segment DNA vaccines and an M segment DNA
vaccine for CCHFV alone or combined with the DNA vac-
cines for HTNV and TBEV.

2. Materials and methods

2.1. DNA vaccine construction

All genes were inserted into pWRG7077, a plasmid con-
taining a cytomegalovirus immediate early promoter and a
kanamycin resistance gene [19] or a slightly modified ver-
sion of that plasmid [17].

The construction of the TBEV vaccine and the HTNV
vaccine were reported earlier [17,19].

We constructed two DNA vaccines for RVFV, both of
which express the viral M genome region encoding the enve-
lope glycoproteins, Gn and Gc, but which differ in the amount
of nonstructural M segment (NSm) coding information that
is included. To generate RVFV+NSm and RVFV−NSm, PCR
primers were designed to incorporate Not1 and EcoR1 sites
for cloning into pWRG7077 containing a multiple cloning
site inserted between the Not1 and BglII sites of the plasmid.
Segments were amplified from plasmids used previously
for constructing recombinant baculoviruses, pAcYM1-
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Bis–Tris pre-cast gels (Invitrogen) run in MOPS buffer
(Invitrogen).

2.3. Preparation of gene gun cartridges, vaccination,
and challenge of mice with RVFV, or TBEV

Plasmid DNA was precipitated onto the outside surfaces
of gold beads (approximately 2 �M in diameter) as described
previously [27]. The DNA loads were 0.5–1 �g/mg of gold.
For studies involving the genetic adjuvants, the RVFV+NSm
DNA vaccine was mixed with plasmids individually encod-
ing the alpha and beta subunits of cholera toxin (CT) or the
alpha and beta subunits of a labile enterotoxin from E. coli
(LT) [28] in a ratio of 2:1:1 and the mixture was precipi-
tated onto gold beads. The DNA-coated gold was dried on
the inside walls of Tefzel tubing, which was then cut into
0.5 in sections. Female BALB/c mice (approximately 4- to
6-weeks old) were vaccinated by using the XR-1 gene gun
(Powderject Vaccines, Inc.) as reported previously [29]. For
challenge studies, mice were transferred to a biosafety level 3
(RVFV) or level 4 (TBEV) containment area and challenged
by intraperitoneal inoculation of approximately 100 LD50 of
TBEV (strain Hypr) or RVFV (strain ZH501). Mice were
observed for signs of illness and weighed daily for at least 21
days.
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2 and pAc373-R4 [21], with the following primers:
ot1(Forward) +NSM5′GTCAGTCAGTCAGTCAGCGG-
CGCATGATTGAAGGAGCT3′; Not1(Forward) −NS-
5′GTCAGTCAGTCAGTCAGCGGCCGCATGGCAGG-
ATTGCA3′; EcoR1(Reverse) 5′CAGTCAGTCAGTCAG-
GAATTCACCACCCCAAATTAC3′.

The DNA vaccine for CCHFV was constructed by excis-
ng the Not1 cassette containing CCHFV, strain 10200, M
egment sequence from a pBluescript construct kindly pro-
ided by Dr. Michael Parker. The resulting fragment was then
loned into the modified pWRG7077 using the Not1 site. The
equence of the clone was confirmed and expression was
hecked as described below.

.2. Transient expression assays

Methods used for measuring transient expression of the
NA vaccines were described earlier [19]. Briefly, for each

ssay, 5 �g of each DNA vaccine was transfected into
onolayers of COS cells plated in 6-well plates (Costar)

y using FuGENE6 (Roche) reagent (Gibco) according to
he manufacturer’s directions. At 24 h after transfection,
he medium was removed from the wells, the cells were
ncubated with cysteine and methionine-deficient medium,
hen radiolabeled with 35S Promix (methionine and cys-
eine, Amersham). Cells were lysed on ice using Zwitter-
ent 3–14 (Calbiochem-Behring) lysis buffer and cellular
uclei removed by centrifugation. Radiolabeled lysates were
recipitated with specific antibodies to each virus and visu-
lized by phosphoimaging after electrophoresis in 4–12%
.4. Plaque reduction neutralization tests

Sera from vaccinated mice were incubated at 56 ◦C for
0 min, then diluted 1:40–1:1280 in EMEM with 10% fetal
ovine serum (FBS). A viral stock of known titer was then
iluted to 1 × 103 plaque forming units (pfu)/ml in either
MEM with 10% FBS or Hanks Balanced Salt Solution

HBSS) + 5% FBS. An equal volume of diluted virus was
hen added to each serum dilution and also to an EMEM-only
ontrol. The tubes were incubated at 4 ◦C overnight. The fol-
owing day, 200 �l of the virus/serum mixture was added to
uplicate wells containing 3- to 7-day-old Vero or Vero E6
onolayers in 6-well plates. The plates were incubated for

0 min at 37 ◦C/5% CO2 with gentle rocking and shaking
very 15 min to distribute the inoculum over the monolayer.
t the end of the incubation period, an agarose overlay was
repared as follows: for every 100 ml of overlay needed,
.6 g of SeaKem ME agarose was added to 34 ml of water,
utoclaved, then held in a 60 ◦C water bath. The following
ere then mixed together, warmed, and then added to the

garose: 50 ml 2 × EMEM, 10 ml of FBS, 4 ml l-glutamine
200 mM), 1 ml 100 × nonessential amino acids, 1 ml of peni-
illin/streptomycin, and 1 ml of Amphotericin B. Each well
as overlaid with 2 ml of the overlay mixture. The plates were

hen incubated for 3–7 days at 37 ◦C/5% CO2, after which
ml of secondary overlay was added to each well. This over-

ay was identical to the primary overlay with the exception
hat only 5 ml of FBS and 5 ml of neutral red solution (Gibco)
ere added. Plaques that appeared during the next 2–3
ays were counted and the neutralizing antibody titers were
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calculated as a reciprocal of the highest dilution resulting in
a 50% or 80% reduction of the plaque number as compared
to the virus-only control wells.

3. Results

3.1. Construction of RVFV DNA vaccines and
demonstration of expression in cell culture

Two DNA vaccines for RVFV were constructed, which
differed only in the amount of nonstructural M segment
coding information that was included. As described ear-
lier, the M genome segment + sense RNA has four potential
translation initiation codons (ATG) upstream of the coding
information for the amino-terminal glycoprotein, Gn, and the
carboxy-terminal glycoprotein, Gc [30]. Initiation at the sec-
ond ATG produces a 14 kD NSm protein as well as Gn and
Gc. Initiation at the 4th ATG results in only Gn and Gc. We
previously demonstrated that baculovirus-expressed proteins
derived from genes in which translation initiates at the 2nd
ATG (in this report referred to as RVFV+NSm) or from the 4th
ATG (in this report referred to as RVFV−NSm) were immuno-
genic in mice, [21]. In this study, we evaluated both constructs
to see if the presence of the additional NSm product would
c
v

w
l
p
G
t
R
G

higher level of expression with the RVFV−NSm construct
(Fig. 1A).

3.2. DNA vaccine for CCHFV

The DNA vaccine for CCHFV was constructed to express
the entire M genome segment. Transfecting cells, radio-
labeling, and immune precipitating the expression prod-
ucts revealed products of the expected sizes for mature Gn
(37 kDa) and Gc (75 kDa) and a larger product, which might
be the 140 kDa precursor of Gn [24] (Fig. 1B).

3.3. Immunogenicity of individual and combination
DNA vaccines for RVFV+NSm, CCHFV, HTNV, and
TBEV in mice

Groups of mice were vaccinated by gene gun three times
at approximately 4-week intervals with each DNA vaccine
or with a combination of DNA vaccines for RVFV, CCHFV,
HTNV, and TBEV. At each dosing, mice in the individual
vaccine groups received four gene gun administrations of the
DNA coated on gold (approximately 10 �g of DNA). Mice
in the combination groups received one gene gun admin-
istration of each of the four DNA vaccines (approximately
2.5 �g of each DNA, for a total of 10 �g of DNA). Mice are
l
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p proxim
ontribute to or detract from the immunogenicity of the DNA
accine.

To assay for gene expression, we transfected cultured cells
ith the two RVFV DNA vaccine constructs, then radio-

abeled and immune precipitated expression products with
olyclonal sera to RVFV. Both constructs produced RVFV
n and Gc (Fig. 1A). A small amount of the NSm pro-

ein (formerly 14 kDa protein) also was precipitated from the
VFV+NSm construct (Fig. 1A). Both constructs expressed
n and Gc, although it appeared that there was a slightly

ig. 1. Immune precipitation of radiolabeled expression products of the RV
ells, the expression products radiolabeled, and immune precipitated using a
ere compared. The RVFV−NSm construct contains coding information on
VFV+NSm construct also encodes a 14 kDa nonstructural protein (NSm).
sed for immune precipitation were hyperimmune mouse ascitic fluid to RV
onoclonal antibody to Gn (Gn, lanes 4 and 7). (B) Expression of a DNA

valuated by immune precipitation using a hyperimmune mouse serum to
recipitated by the same serum. Size markers were included to determine ap
ethal challenge models for both RVFV and TBEV, conse-
uently, challenges with TBEV or RVFV, but not with HTNV
r CCHFV were performed.

As expected, the mice receiving only the TBEV DNA
accine developed strong neutralizing antibody responses
Fig. 2A). After challenge with TBEV, all (8/8) of these mice
emained healthy throughout 22 days of observation, as evi-
enced by the absence of apparent illness, and no weight loss
Fig. 2C). Mice that received all four of the DNA vaccines also
eveloped strong neutralizing antibody responses to TBEV

CCHFV DNA vaccines. The DNA vaccines were transfected into cultured
es to RVFV or CCHFV. (A) Two RVFV M genome segment DNA vaccines
he two envelope glycoproteins, Gn and Gc. In addition to Gn and Gc, the
id with no insert was used as a negative control (ctrl, lane 8). Antibodies
, lanes 2, 5 and 8); a monoclonal antibody to Gc (Gc, lanes 3 and 6); or a

e containing the coding region of the M genome segment of CCHFV was
V (H, lane 2). Products from a plasmid with no insert (ctrl, lane 3) were
ate molecular weights of expression products (M, lane 1 both figures).
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Fig. 2. Neutralizing antibody responses and protection from challenge of mice vaccinated with the TBEV DNA vaccine alone (TBEV DNA) or in combination
with the HTNV, RVFV+NSm and CCHFV DNA vaccines (All four DNAs). (A) PRNT80 titers of mice after three inoculations with the TBEV DNA vaccine
(lanes 1–8) or all of the DNA vaccines (lanes 9–22). (B) Survival of vaccinated mice and controls receiving empty plasmid (DNA controls) or no vaccine (naı̈ve
controls). (C) Percent change in weight per group of mice after challenge with TBEV.

(Fig. 2A), and upon challenge, 13/14 mice survived. We sus-
pect that the one death was not due to the TBEV infection,
as there was no sign of illness before death and there was
no weight loss in the group of mice that included this mouse
(Fig. 2C and data not shown).

Although we have not developed an adult mouse model
for HTNV or for CCHFV infections, we were able to mea-
sure antibody responses to the vaccine in the vaccinated mice.
After three gene gun vaccinations with the HTNV DNA vac-
cine, we found that 3 of 10 mice in the single vaccine group
and 9 of 26 mice in the multiagent groups developed neutral-
izing antibodies to HTNV (PRNT50 1:40–1:80 in the single
group, 1:40–1:160 in the multiagent group, data not shown).
Pools of sera from mice with or without neutralizing anti-
bodies were both able to immune precipitate radiolabeled,
expressed HTNV Gn and Gc, although Gc was more appar-
ent (Fig. 3A).

Only about half of the mice that received the CCHFV
DNA vaccine, either alone or combined with other
vaccines, developed neutralizing antibodies to CCHFV
(PRNT50 < 1:40–1:160). Immune precipitation of radiola-
beled proteins using pooled sera from mice given the indi-
vidual or combined DNAs revealed antibody responses to Gn
and Gc (Fig. 3B).

Unexpectedly, mice vaccinated with the RVFV+NSm vac-
cine did not develop neutralizing antibody responses, and
only three of nine mice in the individual group and 3 of 14
mice in the multiagent group survived challenge with RVFV.
To determine if a non-neutralizing antibody response was
induced in vaccinated mice, we transfected cells with the
RVFV+NSm DNA vaccine, then radiolabeled, and immune
precipitated expression products using sera collected after
the third vaccination. We could not detect signals for Gn and
Gc in any of the vaccinated mice before challenge, although
a control immune serum did precipitate both proteins (data
not shown).

Because of the poor performance of the RVFV+NSm DNA
vaccine, we carried out two additional experiments. In one of
the experiments, we re-evaluated the RVFV+NSm DNA vac-
cine in conjunction with two gene gun-delivered adjuvants,
and in the second experiment, we evaluated our other RVFV
construct, RVFV−NSm.

For the adjuvant experiment, we co-administered the
RVFV+NSm vaccine with plasmids expressing the alpha and
beta subunits of either E. coli labile enterotoxin (LT) or
cholera toxin (CT) to groups of mice. Co-administration of
these genetic adjuvants has been shown to augment the Th1
cytokine responses (gamma interferon) in mice to multiple
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Fig. 3. Immune precipitation of radiolabeled, expressed HTNV or CCHFV
proteins using sera from vaccinated mice. (A) Precipitation of HTNV expres-
sion products by hyperimmune mouse ascitic fluid to HTNV (H, lane 2) or
with pooled sera from mice given only the HTNV DNA vaccine (HTNV
DNA, lanes 3, 4) or in combination with DNA vaccines for CCHFV,
RVFV+NSm, and TBEV (All four DNAs, lanes 5, 6, 7). Pooled sera from
control mice vaccinated with a plasmid with no insert served as negative
controls (ctrl, lanes 8, 9). (B) Pooled sera from mice vaccinated with the
CCHFV vaccine only (CCHFV DNA, lane 2) or with the vaccine given in
combination with DNA vaccines for HTNV, TBEV and RVFV+NSm (All
four DNAs, lane 3). Protein size markers (M) are in lane 1 of both figures.

viral antigens when co-delivered with DNA vaccines. In addi-
tion, both adjuvants also increased antibody responses and
Th2 cytokine responses (interleukin 4) to certain antigens
tested [28].

In our experiment, groups of mice were vaccinated four
times by gene gun with the RVFV+NSm DNA by itself or
mixed with the genetic adjuvants. Control groups were vac-
cinated with either the empty plasmid or this plasmid mixed
with the genetic adjuvants. Mice were bled 3 weeks after
the last vaccination and sera were evaluated by PRNT and
immune precipitation. The mice were then challenged with
100 LD50 of RVFV. PRNT50 titers of 1:40 or 1:80 were
measured in four of nine mice given the RVFV+NSm, but no
neutralizing antibodies were detected in mice receiving the
vaccine combined with either of the adjuvants. Survival to
challenge in the RVFV+NSm group, CT group, or LT group,
was 2/9, 3/10 and 5/10 mice, respectively (Fig. 4A). Thus,
the RVFV+NSm DNA vaccine was poorly immunogenic with
or without the adjuvants.

Fig. 4. Survival of mice vaccinated with the RVFV DNA vaccines. (A)
Groups of mice were inoculated four times with the RVFV+NSm vaccine
alone, or mixed with genetic adjuvants encoding the alpha and beta subunits
of cholera toxin (CT) or E. coli labile enterotoxin (LT). Control mice received
a plasmid with no insert (ctrl) or the empty plasmid mixed with the CT
or LT genetic adjuvants. Mice were challenged with 100 LD50 of RVFV
and survival monitored for 30 days. No changes in survival after the 18
days shown were noted. (B) Mice were vaccinated three times with the
RVFV−NSm DNA vaccine or a control plasmid with no insert (ctrl), then
challenged with 100 LD50 of RVFV. Survival was monitored for 31 days
after challenge.

In contrast to the RVFV+NSm vaccine, the RVFV−NSm
vaccine elicited neutralizing antibodies to RVFV (PRNT50
1:40–1:320) in all 10 mice receiving three gene gun vaccina-
tions and all mice survived challenge with RVFV (Fig. 4B).
Although 3 of 10 mice in the control group survived chal-
lenge, all three showed signs of extreme illness, whereas
the RVFV−NSm-vaccinated mice appeared healthy through-
out the observation period.

3.4. Immunogenicity of individual and combination
DNA vaccines for RVFV−NSm, HTNV, and TBEV in mice

To evaluate the RVFV−NSm vaccine when given in combi-
nation with two of the other vaccines, we vaccinated groups
of mice three times at 3-week intervals with two gene gun
administrations/mouse of the individual DNAs (total 5 �g of
DNA) or with two gene gun inoculations per mouse of each
of the three DNA vaccines (5 �g of each vaccine).

The RVFV−NSm vaccine elicited strong neutralizing anti-
body responses in all but one mouse in the individual group



K. Spik et al. / Vaccine 24 (2006) 4657–4666 4663

Fig. 5. Neutralizing antibody responses and survival to challenge of mice
vaccinated with the RVFV−NSm DNA vaccine. (A) PRNT50 titers were deter-
mined for mice inoculated three times with the RVFV−NSm DNA vaccine
alone (RVFV−NSm DNA, white bars) or in combination with DNA vaccines
for TBEV and HTNV (All three DNAs, grey-shaded bars). Data from mice
challenged with RVFV are indicated by the stippling in the white or grey
bars. An asterisk indicates the mouse that died after challenge with RVFV.
(B) Mice vaccinated with only the RVFV−NSm DNA vaccine, with all three
DNA vaccines, or with a control plasmid with no insert (ctrl) were chal-
lenged with 1000 LD50 of RVFV and survival was monitored for 30 days,
with no changes observed after the 26 days shown.

(PRNT50 1:160–1:1280) (Fig. 5A). All 10 mice survived
challenge with RVFV. Of the mice receiving the RVFV vac-
cine combined with the TBEV and HTNV vaccines, 15 of
20 had neutralizing antibody responses of 1:40 or greater
(Fig. 5A). Of the 10 mice challenged with RVFV in the mul-
tiagent group, 9 survived, with the single death occurring in a
mouse with a <1:40 neutralizing antibody response (Fig. 5A
and B). All control mice became ill and 9 of 10 died (Fig. 5B).

As in the earlier experiment, mice vaccinated with the
TBEV DNA vaccine alone or in combination with other vac-
cines developed strong neutralizing antibody responses to
TBEV (Fig. 6) and all mice survived challenge.

Similar to results obtained with HTNV in the four-vaccine
study, 5 of 10 mice in the individual group, and 4 of 17 mice
in the multiagent groups developed neutralizing antibody
responses to HTNV (PRNT50 1:40–1:160). In the earlier
study, we only assayed pooled sera by immune precipitation
to determine if the vaccinated mice had antibodies to HTNV.
In this study, we assayed each mouse’s serum in the individ-
ual group, and pools of sera from five mice in the multiagent
groups. We found that all samples assayed precipitated radi-
olabeled HTNV envelope glycoproteins, and that there was
no apparent difference between the signals observed when

Fig. 6. Neutralizing antibody responses of vaccinated mice to TBEV.
PRNT50 titers of sera from mice vaccinated with the TBEV DNA vac-
cine alone (TBEV DNA, white bars) or combined with the RVFV−NSm and
the HTNV DNA vaccines (All three DNAs, grey-shaded bars) were deter-
mined. The stippling of the white bars and grey bars indicates data from
mice challenged with TBEV.

proteins were precipitated with sera from mice with or with-
out neutralizing antibodies (data not shown).

4. Discussion

We constructed DNA vaccines for RVFV and CCHFV and
tested their immunogenicity in mice. We further compared
these DNA vaccines in mice in combination with each other
and with DNA vaccines that we previously engineered for
HTNV and TBEV.

RVFV has a complicated natural expression strategy, with
at least two in-frame translation initiation codons used in
normal infections. Initiation at the first in-frame ATG results
in 78 kDa protein representing a fusion of the entire preg-
lycoprotein coding region and Gn, as well as Gc. Initiation
from this ATG allows the use of a glycosylation site within
the preglycoprotein coding region, but this glycosylation is
apparently unimportant for cleavage of the 78 kDa protein
to yield NSm and Gn [31,32]. Translation from the second
ATG, which is found 37 amino acids downsteam from the
first, yields a 14 kDa NSm protein and Gn and Gc [31,32].
The glycosylation site, which is used during translation from
the first ATG, is not used in translation from the second ATG
[32]. Although it is not clear if the fourth in-frame ATG is
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sed by RVFV during infection, it can be used to generate
n and Gc in a variety of expressions systems ([21,30–33],

his report).
In our studies, we found that the RVFV−NSm construct,

hich uses the fourth in-frame translation initiation codon,
as highly immunogenic in mice and elicited protective

mmunity. In contrast, the RVFV+NSm vaccine, which uses
he second in-frame codon, was not immunogenic. This find-
ng was unexpected in that both the constructs expressed in
ell culture and produced apparently similar amounts of Gn
nd Gc. We do not think that this finding reflects a techni-
al difficulty with the RVFV+NSm, in that similar results were
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obtained in two separate experiments, one with the CT and LT
genetic adjuvants, and one without them. The adjuvants did
not improve the antibody responses elicited to the RVFV+NSm
vaccine, which was not entirely unexpected. In earlier stud-
ies, influences of both sets of vectors on antibody responses
were antigen dependent and ranged from no effect to sharp
reductions in the immunoglobulin G1 (IgG1)-to-IgG2a ratios
[28]. Here, we did not assess the antibody isotypes in the
sera of vaccinated mice, thus we do not know if the adjuvants
shifted the responses from the normal Th2-type response that
we observe after gene gun vaccination of mice toward a more
Th1-type response. The LT adjuvant may have provided some
benefit in that there was a small improvement in survival
among mice that received the LT subunits along with the
RVFV+NSm vaccine (5 of 10 survived) as compared to those
that only received the RVFV+NSm vaccine (two of nine sur-
vived). We did not pursue this finding further, because of the
poor performance of the vaccine itself.

Earlier studies demonstrated that vaccinia virus-expressed
RVFV genes, which either included or eliminated the preg-
lycoprotein coding region, trafficked normally through the
Golgi [33]. A more recent study, with a T7 expression sys-
tem, confirmed these earlier results and further demonstrated
that the Golgi localization signal is found in Gn in a region
consisting of a 20 amino acid transmembrane domain and the
adjacent 28 amino acids of the cytosolic tail [34]. Although
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for CCHFV, thus we were unable to determine if our vaccine
offered protective immunity. We currently are attempting to
generate a CCHFV that is able to kill adult mice, and if we
are successful, will retest this vaccine for protective efficacy.
In addition, we are preparing CCHFV constructs that express
each of the mature glycoproteins separately and will compare
their immunogenicity to that of the DNA vaccine described
in this report.

Adult mice are not particularly useful models for HTNV
infection. Newborn mice have been found to suffer fatal neu-
rological disease after intracerebral [35,36] or intraperitoneal
injection of HTNV [37], but immunocompetent adult mice
generally clear the virus. One recent report, however, found
that adult mice can also suffer neurological disease and death
after intraperitoneal injection of HTNV [38]. It is not clear
why these results differ from those of earlier studies, but there
is a possibility that the virus used in the challenges had under-
gone some minor mutations, as evidenced by nucleotide and
amino acid sequence changes that the authors noted. As we
did not have access to this particular HTNV stock during our
studies, we did not attempt to use it for challenge; however,
it would be interesting to compare that viral stock to our own
in mice.

In our studies, we found that mice did not mount strong
neutralizing antibody responses to our HTNV DNA vac-
cine. In contrast, this same HTNV DNA vaccine was able to
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e do not have an explanation as to why the RVFV+NSm con-
truct would behave differently in mice than in cell culture,
he unexpected absence of immunogenicity for a construct
s something we have observed before in our studies of
antavirus DNA vaccines. We showed that although DNA
accines for two hantaviruses, HTNV and Seoul virus, are
ighly immunogenic in hamsters, a DNA vaccine for another
antavirus, Andes virus (ANDV), which was constructed the
ame way as the other two vaccines, failed to elicit immune
esponse in hamsters [18]. Interestingly, however, this ANDV
NA vaccine was able to elicit high levels of neutralizing

ntibodies in nonhuman primates [18]. Thus, there clearly
an be differences not only between cell-culture expression
nd induction of immunity in animal models, but also among
ifferent animal models.

Like RVFV, CCHFV uses a complicated and unique,
xpression strategy. CCHFV and other nairoviruses, differ
rom other animal viruses in the family in that they use post-
ranslational processing as well as co-translational processing
o generate their mature envelope glycoproteins. There is cur-
ently no information available to relate the processing events
o viral pathogenesis; therefore, in our studies, we expressed
he entire M segment coding region. In cell-culture expres-
ion assays, correct processing appears to have occurred, in
hat we were able to detect polypeptides of the expected sizes
or both Gn and Gc. In addition, we were able to demon-
trate that the CCHFV DNA vaccine elicited neutralizing
ntibodies in some of the vaccinated mice as well as anti-
odies able to immune precipitate radiolabeled expression
roducts. Unfortunately, there is no known challenge model
licit strong neutralizing antibody responses in hamsters and
onkeys [16–18,39]. Vaccinated mice did appear to develop

ntibodies to HTNV detectable by immune precipitation, and
here were no obvious differences in the results from the
ndividual and multiagent groups. For a more comprehensive
valuation of this HTNV DNA vaccine in a multiagent for-
at, it will likely be necessary to perform the HTNV portions

f the study either in hamsters or in nonhuman primates.
Although mice were not a good models for the HTNV or

CHFV DNA vaccines, they were excellent models for the
VFV−NSm, and TBEV DNA vaccine studies. Here and in
arlier studies, we found that both mice and nonhuman pri-
ates develop high levels of neutralizing antibodies to TBEV

fter DNA vaccination [19,20]. Consequently, a comparison
f the immune responses of mice to the RVFV and TBEV
accines in combination experiments can probably provide
he most insight into the potential for multiagent DNA vac-
ines for these four viruses in mice.

In both the four DNA and the three DNA vaccine exper-
ments, the TBEV DNA vaccine elicited strong neutraliz-
ng antibody responses and protective immunity when given
lone or combined with other DNA vaccines. There did
ppear to be a trend toward slightly higher responses in the
ndividual group versus the multiagent groups in the first
xperiment; however, in the second experiment the geomet-
ic mean titers of the neutralizing antibody responses for the
roups were nearly the same. For the RVFV−NSm vaccine, in
he second study, however, there still appeared to be a trend
oward a better response in the single than in the multiagent
roup with overall consistency of developing neutralizing
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antibodies as well as higher neutralizing antibody titers seen
in mice in the individual group as compared to the multiagent
groups.

Despite these apparent trends, in general, we found no
evidence for drastic diminution of immunogenicity when
the vaccines were given together as opposed to individually.
Although to our knowledge, there are no reports of interfer-
ence among unrelated gene products, such as those in our
study, there have been reports of interference when two or
more genes from the same organism are used together as DNA
vaccines. For example, when DNA vaccines expressing the
L1R and A33R of vaccinia virus are delivered together into
the same cells of a mouse by gene gun (i.e., are coated on
the same gold beads), the L1R response is greatly reduced
as compared to when L1R is given by itself. However,
if the DNAs are delivered to different cells of the mouse
(DNAs coated on different gold beads), strong responses are
elicited to both gene products [40]. The authors hypothe-
sized that the interference might be due to A33R-specific
antibodies elicited by the initial vaccination, causing a lysis
of A33R-expressing cells during subsequent boosts and, in
doing so, diminishing the boosting effect [40]. In another
study, five plasmids expressing different malaria genes were
injected into mice and immune responses measured in mice
given each plasmid separately or as a mixture of all five.
Although the mixture induced higher levels of antibodies
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the immunogenicity and the consistency of vaccination for
both groups. Further studies will be needed to support this
conjecture.

In conclusion, the study of combination DNA vaccines
is in its infancy. It is likely that empirical analysis of various
combinations of vaccines will be required to gauge their com-
patibility, and that new methods and models will be needed
to truly assess differences in immunogenicity that will arise
when vaccines are given in combination. In this study, we
make available for the first time, DNA vaccines for RVFV
and CCHFV, which can be further analyzed as multiagent
vaccines.
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